Bagaimana Sistem Pakar Melakukan Inferensi?

1. Sistem Perantaian Maju (Forward Chaining Systems)
Pada sistem perantaian maju, fakta-fakta dalam dalam sistem disimpan dalam memori kerja dan secara kontinyu diperbarui. Aturan dalam sistem merepresentasikan aksi-aksi yang harus diambil apabila terdapat suatu kondisi khusus pada item-item dalam memori kerja, sering disebut aturan kondisi-aksi. Kondisi biasanya berupa pola yang cocok dengan item yang ada di dalam memori kerja, sementara aksi biasanya berupa penambahan atau penghapusan item dalam memori kerja.

Aktivitas sistem dilakukan berdasarkan siklus mengenal-beraksi (recognise-act). Mula-mula, sistem mencari semua aturan yang kondisinya terdapat di memori kerja, kemudian memilih salah satunya dan menjalankan aksi yang bersesuaian dengan aturan tersebut. Pemilihan aturan yang akan dijalankan (fire) berdasarkan strategi tetap yang disebut strategi penyelesain konflik. Aksi tersebut menghasilkan memori kerja baru, dan siklus diulangi lagi sampai tidak ada aturan yang dapat dipicu (fire), atau goal (tujuan) yang dikehendaki sudah terpenuhi.

Sebagai contoh, lihat pada sekumpulan aturan sederhana berikut (Di sini kita memakai kata yang diawali huruf kapital untuk menyatakan suatu variabel. Pada sistem lain, mungkin dipakai cara lain, misalnya menggunakan awalan ? atau ^):
  • JIKA (mengajar X) DAN (mengoreksi_tugas X) MAKA TAMBAH (terlalu_banyak_bekerja X)
  • JIKA (bulan maret) MAKA TAMBAH (mengajar balza)
  • JIKA (bulan maret) MAKA TAMBAH (mengoreksi_tugas balza)
  • JIKA (terlalu_banyak_bekerja X) ATAU (kurang_tidur X) MAKA TAMBAH (mood_kurang_baik X)
  • JIKA (mood_kurang_baik X) MAKA HAPUS (bahagia X)
  • JIKA (mengajar X) MAKA HAPUS (meneliti X)
Kita asumsikan, pada awalnya kita mempunyai memori kerja yang berisi fakta berikut:
  • (bulan maret)
  • (bahagia balza)
  • (meneliti balza)
Sistem Pakar mula-mula akan memeriksa semua aturan yang ada untuk mengenali aturan manakah yang dapat memicu aksi, dalam hal ini aturan 2 dan 3. Sistem kemudian memilih salah satu di antara kedua aturan tersebut dengan strategi penyelesaian konflik. Katakanlah aturan 2 yang terpilih, maka fakta (mengajar balza) akan ditambahkan ke dalam memori kerja. Keadaan memori kerja sekarang menjadi:
  • (mengajar balza)
  • (bulan maret)
  • (bahagia balza)
  • (meneliti balza)
Sekarang siklus dimulai lagi, dan kali ini aturan 3 dan 6 yang kondisinya terpenuhi. Katakanlah aturan 3 yang terpilih dan terpicu, maka fakta (mengoreksi_tugas balza) akan ditambahkan ke dalam memori kerja. Lantas pada siklus ketiga, aturan 1 terpicu, sehingga variabel X akan berisi (bound to) balza, dan fakta (terlalu_banyak_bekerja balza) ditambahkan, sehingga isi memori kerja menjadi:
  • (terlalu_banyak_bekerja balza)
  • (mengoreksi_tugas balza)
  • (mengajar balza)
  • (bulan maret)
  • (bahagia balza)
  • (meneliti balza)
Aturan 4 dan 6 dapat diterapkan. Misalkan aturan 4 yang terpicu, sehingga fakta (mood_kurang_baik balza) ditambahkan. Pada siklus berikutnya, aturan 5 terpilih dan dipicu, sehingga fakta (bahagia balza) dihapus dari memori kerja. Kemudian aturan 6 akan terpicu dan fakta (meneliti balza) dihapus pula dari memori kerja menjadi:
  • (mood_kurang_baik balza)
  • (terlalu_banyak_bekerja balza)
  • (mengoreksi_tugas balza)
  • (mengajar balza)
  • (bulan maret)
Urutan aturan yang dipicu bisa jadi sangat vital, terutama di mana aturan-aturan yang ada dapat mengakibatkan terhapusnya item dari memori kerja. Tinjau kasus berikut: andaikan terdapat tambahan aturan pada kumpulan aturan di atas, yaitu:
JIKA (bahagia X) MAKA TAMBAH (memberi_nilai_bagus X)
Jika aturan 7 ini terpicu sebelum (bahagia balza) dihapus dari memori, maka Sistem Pakar akan berkesimpulan bahwa saya akan memberi nilai bagus. Namun jika aturan 5 terpicu dahulu, maka aturan 7 tidak akan dijalankan (artinya saya tidak akan memberi nilai bagus).

2. Strategi penyelesaian konflik (conflict resolution strategy)
Strategi penyelesaian konflik dilakukan untuk memilih aturan yang akan diterapkan apabila terdapat lebih dari 1 aturan yang cocok dengan fakta yang terdapat dalam memori kerja. Di antaranya adalah:
  1. No duplication. Jangan memicu sebuah aturan dua kali menggunakan fakta/data yang sama, agar tidak ada fakta yang ditambahkan ke memori kerja lebih dari sekali.
  2. Recency. Pilih aturan yang menggunakan fakta yang paling baru dalam memori kerja. Hal ini akan membuat sistem dapat melakukan penalaran dengan mengikuti rantai tunggal ketimbang selalu menarik kesimpulan baru menggunakan fakta lama.
  3. Specificity. Picu aturan dengan fakta prakondisi yang lebih spesifik (khusus) sebelum aturan yang mengunakan prakondisi lebih umum. Contohnya: jika kita mempunyai aturan “JIKA (burung X) MAKA TAMBAH (dapat_terbang X)” dan “JIKA (burung X) DAN (pinguin X) MAKA TAMBAH (dapat_berenang X)” serta fakta bahwa tweety adalah seekor pinguin, maka lebih baik memicu aturan kedua dan menarik kesimpulan bahwa tweety dapat berenang.
  4. Operation priority. Pilih aturan dengan prioritas yang lebih tinggi. Misalnya ada fakta (bertemu kambing), (ternak kambing), (bertemu macan), dan (binatang_buas macan), serta dua aturan: “JIKA (bertemu X) DAN (ternak X) MAKA TAMBAH (memberi_makan X)” dan “JIKA (bertemu X) DAN (binatang_buas X) MAKA TAMBAH (melarikan_diri)”, maka kita akan memilih aturan kedua karena lebih tinggi prioritasnya.
3. Sistem Perantaian Balik (Backward Chaining Systems)
Sejauh ini kita telah melihat bagaimana sistem berbasis aturan dapat digunakan untuk menarik kesimpulan baru dari data yang ada, menambah kesimpulan ini ke dalam memori kerja. Pendekatan ini berguna ketika kita mengetahui semua fakta awalnya, namun tidak dapat menebak konklusi apa yang bisa diambil. Jika kita tahu kesimpulan apa yang seharusnya, atau mempunyai beberapa hipotesis yang spesifik, maka perantaian maju di atas menjadi tidak efisien. Sebagai contoh, jika kita ingin mengetahui apakah saya dalam keadaan mempunyai mood yang baik sekarang, kemungkinan kita akan berulangkali memicu aturan-aturan dan memperbarui memori kerja untuk mengambil kesimpulan apa yang terjadi pada bulan Maret, atau apa yang terjadi jika saya mengajar, yang sebenarnya perlu terlalu kita ambil pusing. Dalam hal ini yang diperlukan adalah bagaimana dapat menarik kesimpulan yang relevan dengan tujuan atau goal.

Hal ini dapat dikerjakan dengan perantaian balik dari pernyataan goal (atau hipotesis yang menarik bagi kita). Jika diberikan sebuah goal yang hendak dibuktikan, maka mula-mula sistem akan memeriksa apakah goal tersebut cocok dengan fakta-fakta awal yang dimiliki. Jika ya, maka goal terbukti atau terpenuhi. Jika tidak, maka sistem akan mencari aturan-aturan yang konklusinya (aksinya) cocok dengan goal. Salah satu aturan tersebut akan dipilih, dan sistem kemudian akan mencoba membuktikan fakta-fakta prakondisi aturan tersebut menggunakan prosedur yang sama, yaitu dengan menset prakondisi tersebut sebagai goal baru yang harus dibuktikan.

Perhatikan bahwa pada perantaian balik, sistem tidak perlu memperbarui memori kerja, namun perlu untuk mencatat goal-goal apa saja yang dibuktikan untuk membuktikan goal utama (hipotesis).

Secara prinsip, kita dapat menggunakan aturan-aturan yang sama untuk perantaian maju dan balik. Namun, dalam prakteknya, harus sedikit dimodifikasi. Pada perantaian balik, bagian MAKA dalam aturan biasanya tidak diekspresikan sebagai suatu aksi untuk dijalankan (misalnya TAMBAH atau HAPUS), tetapi suatu keadaan yang bernilai benar jika premisnya (bagian JIKA) bernilai benar. Jadi aturan-aturan di atas diubah menjadi:
  1. JIKA (mengajar X) DAN (mengoreksi_tugas X) MAKA (terlalu_banyak_bekerja X)
  2. JIKA (bulan maret) MAKA (mengajar balza)
  3. JIKA (bulan maret) MAKA (mengoreksi_tugas balza)
  4. JIKA (terlalu_banyak_bekerja X) ATAU (kurang_tidur X) MAKA (mood_kurang_baik X)
  5. JIKA (mood_kurang_baik X) MAKA TIDAK BENAR (bahagia X)
dengan fakta awal:
  • (bulan maret)
  • (meneliti balza)
Misalkan kita hendak membuktikan apakah mood sedang kurang baik. Mula-mula kita periksa apakah goal cocok dengan fakta awal. Ternyata tidak ada fakta awal yang menyatakan demikian, sehingga langkah kedua yaitu mencari aturan mana yang mempunyai konklusi (mood_kurang_baik balza). Dalam hal ini aturan yang cocok adalah aturan 4 dengan variabel X diisi dengan (bound to) balza. Dengan demikian kita harus membuktikan bahwa prakondisi aturan ini, (terlalu_banyak_bekerja balza) atau (kurang_tidur balza), salah satunya adalah benar (karena memakai ATAU). Lalu diperiksa aturan mana yang dapat membuktikan bahwa adalah (terlalu_banyak_bekerja balza) benar, ternyata aturan 1, sehingga prakondisinya, (mengajar X) dan (mengoreksi_tugas X), dua-duanya adalah benar (karena memakai DAN). Ternyata menurut aturan 2 dan 3, keduanya bernilai bernilai benar jika (bulan maret) adalah benar. Karena ini sesuai dengan fakta awal, maka keduanya bernilai benar. Karena semua goal sudah terpenuhi maka goal utama (hipotesis) bahwa mood saya sedang kurang baik adalah benar (terpenuhi).

Untuk mencatat goal-goal yang harus dipenuhi/dibuktikan, dapat digunakan stack (tumpukan). Setiap kali ada aturan yang konklusinya cocok dengan goal yang sedang dibuktikan, maka fakta-fakta prakondisi dari aturan tersebut ditaruh (push) ke dalam stack sebagai goal baru. Dan setiap kali goal pada tumpukan teratas terpenuhi atau dapat dibuktikan, maka goal tersebut diambil (pop) dari tumpukan. Demikian seterusnya sampai tidak ada goal lagi di dalam stack, atau dengan kata lain goal utama (yang terdapat pada tumpukan terbawah) sudah terpenuhi.

4. Pemilihan Sistem Inferensi
Secara umum kita dapat memakai panduan berikut untuk menentukan apakah kita hendak memilih perantaian maju atau balik untuk Sistem Pakar yang kita bangun.

5. Ketidakpastian dalam Aturan
Sejauh ini kita menggunakan nilai kebenaran tegas dalam fakta dan aturan yang dipakai, misalnya: jika terlalu banyak bekerja maka pasti mood kurang baik. Pada kenyataanya, seringkali kita tidak bisa membuat aturan yang absolut untuk mengambil kesimpulan secara pasti, misalnya: jika terlalu banyak bekerja maka kemungkinan besar mood kurang baik. Untuk itu, seringkali aturan yang dipakai memiliki nilai kepastian (certainty value). Contohnya: jika terlalu banyak bekerja maka pasti mood kurang baik (kepastian 0,75).

1. Aplikasi Sederhana: Sistem Pakar Bengkel Mobil
Ini adalah contoh Sistem Pakar sederhana, yang bertujuan untuk mencari apa yang salah sehingga mesin mobil pelanggan yang tidak mau hidup, dengan memberikan gejala-gejala yang teramati. Anggap Sistem Pakar kita memiliki aturan-aturan berikut:
  1. JIKA mesin_mendapatkan_bensin DAN starter dapat dihidupkan MAKA ada masalah dengan pengapian
  2. JIKA TIDAK BENAR starter dapat dihidupkan DAN TIDAK BENAR lampu menyala MAKA ada masalah dengan akI
  3. JIKA TIDAK BENAR starter dapat dihidupkan DAN lampu menyala MAKA ada masalah dengan starter
  4. JIKA ada bensin dalam tangki bahan bakar MAKA mesin mendapatkan bensin
Terdapat 3 masalah yang mungkin, yaitu: ada_masalah_dengan_pengapian, ada_masalah_dengan_aki dan ada_masalah_dengan_starter. Dengan sistem terarah-tujuan (goal-driven), kita hendak membuktikan keberadaan setiap masalah tadi.

Pertama, Sistem Pakar berusaha untuk membuktikan kebenaran ada_masalah_dengan_pengapian. Di sini, aturan 1 dapat digunakan, sehingga Sistem Pakar akan menset goal baru untuk membuktikan apakah mesin_mendapatkan_bensin serta starter_dapat_dihidupkan. Untuk membuktikannya, aturan 4 dapat digunakan, dengan goal baru untuk membuktikan mesin_mendapatkan_bensin. Karena tidak ada aturan lain yang dapat digunakan menyimpulkannya, sedangkan sistem belum memperoleh solusinya, maka Sistem Pakar kemudian bertanya kepada pelanggan: “Apakah ada bensin dalam tangki bahan bakar?”. Sekarang, katakanlah jawaban klien adalah “Ya”, jawaban ini kemudian dicatat, sehingga klien tidak akan ditanyai lagi dengan pertanyaan yang sama.

Nah, karena sistem sekarang sudah dapat membuktikan bahwa mesin mendapatkan bensin, maka sistem sekarang berusaha mengetahui apakah starter_dapat_dihidupkan. Karena sistem belum tahu mengenai hal ini, sementara tidak ada aturan lagi yang dapat menyimpulkannya, maka Sistem Pakar bertanya lagi ke klien: “Apakah starter dapat dihidupkan?”. Misalkan jawabannya adalah “Tidak”, maka tidak ada lagi aturan yang dapat membuktikan ada_masalah_dengan_pengapian, sehingga Sistem Pakar berkesimpulan bahwa hal ini bukanlah solusi dari problem yang ada, dan kemudian melihat hipotesis berikutnya: ada_masalah_dengan_aki. Sudah diketahui (dibuktikan) bahwa mesin tidak dapat distarter, sehingga yang harus dibuktikan adalah bahwa lampu tidak menyala. Sistem Pakar kemudian bertanya: “Apakah lampu menyala?”. Misalkan jawabannya adalah “Tidak”, maka sudah terbukti bahwa ada masalah dengan aki.

Sistem ini mungkin berhenti sampai di sini, tetapi biasanya ada kemungkinan terdapat lebih dari satu solusi (misalnya terdapat lebih dari satu kerusakan), atau ada kemungkinan terdapat solusi lain yng lebih tepat, sehingga biasanya semua hipotesis diperiksa kebenarannya. Sistem Pakar ini kemudian mencoba membuktikan bahwa ada_masalah_dengan_starter, namun dari fakta yang sudah diperoleh, yaitu lampu tidak menyala, maka pembuktiannya menjadi gagal. Dengan demikian solusi yang diberikan oleh Sistem Pakar adalah ada masalah dengan aki.

Secara lengkap, interaksi antara Sistem Pakar dengan klien mungkin seperti ini:
System Pakar: Apakah ada bensin dalam tangki bahan bakar?
Klien: Ya
System Pakar: Apakah starter dapat dihidupkan?
Klien: Tidak
System Pakar: Apakah lampu menyala?
Klien: Tidak
System Pakar: Saya berkesimpulan bahwa ada masalah dengan aki
Fasilitas Penjelasan
Kebanyakan Sistem Pakar mempunyai fasilitas penjelasan yang mengijinkan klien untuk bertanya mengapa dia diberi suatu pertanyaan atau bagaimana dapat mencapai suatu kesimpulan. Pertanyaan dari klien tersebut dijawab dengan mengacu pada goal, aturan yang dipakai, dan data-data yang ada. Contoh pemakaian fasilitas penjelas dalam Sistem Pakar di atas dapat dilihat pada percakapan berikut:
System Pakar: Apakah ada bensin dalam tangki bahan bakar?
Klien: Ya
System Pakar: Apakah starter dapat dihidupkan?
Klien: Tidak
System Pakar: Apakah lampu menyala?
Klien: Mengapa?
System Pakar: Saya mencoba membuktikan bahwa ada masalah dengan aki. Sudah ditunjukkan adalah tidak benar starter dapat dihidupkan. Sehingga jika tidak benar bahwa lampu menyala, maka ada masalah dengan aki. Apakah lampu menyala?
Klien: Tidak
System Pakar: Saya berkesimpulan bahwa ada masalah dengan aki
Klien: Bagaimana bisa?
System Pakar: Hal ini sesuai dengan aturan no 2: JIKA TIDAK BENAR starter_dapat_dihidupkan DAN TIDAK BENAR lampu_menyala MAKA ada_masalah_dengan_aki bahwa tidak benar starter_dapat_dihidupkan sudah dijawab, bahwa tidak benar lampu_menyala sudah dijawab, sehingga dapat disimpulkan bahwa ada_masalah_dengan_aki.

Fasilitas penjelasan berhubungan dengan pencatatan aturan apa saja yang digunakan untuk mengambil kesimpulan, dan menggunakan catatan tersebut untuk menyusun penjelasan. Pembangkitan penjelasan sederhana seperti contoh di atas bukanlah persoalan yang sulit, namun pemahaman klien terhadap penjelasan tersebut tidaklah sama, sehingga seringkali klien tetap tidak mengerti maksudnya.

Hal ini karena biasanya penjelasan hanya meliputi pengetahuan yang dangkal atau hanya permukaan saja sebagaimana tercantum dalam autran yang dipunyai, bukannya pengetahuan yang mendalam yang mendasari aturan tersebut. Dalam contoh di atas, Sistem Pakar hanya mengatakan bahwa hal ini sesuai dengan aturan no 2, tetapi tidak menjelaskan secara lebih detil mengenai aturan 2 tersebut. Mungkin klien perlu diberi pengertian bahwa lampu dan starter dua-duanya menggunakan aki untuk menyalakannya. Hal penting lain adalah ketika klien gagal mengerti atau menerima penjelasan yang diberikan, biasanya Sistem Pakar tidak dapat memberi penjelasan dengan cara lain (tidak begitu halnya dengan seorang pakar yang mampu menggunakan kalimat yang lain untuk mencoba menjelaskannya).

2. Eliza
Eliza adalah salah satu Sistem Pakar yang paling awal dikembangkan. Ini adalah program komputer terapis yang dibuat oleh Joseph Weizenbaum di MIT. Pengguna berkomunikasi dengannya sebagaimana sedang berkonsultasi dengan seorang terapis. Berikut ini adalah contoh percakapan antara Eliza dengan seorang klien:
Eliza: Hello. I am ELIZA. How can I help you?
Klien: My name is Balza.
Eliza: I have told you before, I do not care about names.
Klien: I don’t have any money. That’s my problem.
Eliza: Why do you say your problem?
Klien: Because you asked me.
Eliza: Do any other reasons not come to mind?
Klien: No.
Eliza: You are being a bit negative.
Klien: Why?
Eliza: Please go on.
Klien: OK. I am bankrupt.
Eliza: How long have you been bankrupt?
Klien: A year.
Eliza: Please go on.
Klien: So, what should I do?
Eliza: Does that question interest you?
Klien: Yes, how can I make big money?
Eliza: You are sure?
Klien: Of course I’m sure.
...
3. Parry
Parry adalah Sistem Pakar yang juga paling awal dikembangkan di Stanford University oleh seorang psikiater, Kenneth Colby, yang mensimulasikan seorang paranoid. Berikut ini contoh respon Parry terhadap pertanyaan seorang psikiater yang menginterviunya.
Psikiater: Why are you in the hospital?
Parry: I shouldn't be here.
Psikiater: Who brought you here?
Parry: The police.
Psikiater: What trouble did you have with the police?
Parry: Cops don't do their job.
Psikiater: What do they do instead?
Parry: Cops arrest the wrong people.
Psikiater: They arrest the right ones sometimes
Parry: The law should get those Italian crooks.
Psikiater: Are you Italian?
Parry: My background is British but I was born in this country.
Psikiater: Do you know any Italian crooks?
Parry: I try to avoid the underworld.
Tag : Sistem Pakar
0 Komentar untuk "Bagaimana Sistem Pakar Melakukan Inferensi?"

Back To Top